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ABSTRACT
A lower bound is given fer the volume of sets of constant width.

1. Introduction

A set of constant width 4 in Euclidean space R” is a compact, convex set,
such that the distance between any distinct, parallel supporting hyperplanes of
it is d (see [3, pp. 122-131], [2]).

The Blaschke-Lebesgue theorem states that of all planar sets having con-
stant width 4 the Reuleaux triangle has the least area, (n — \/§)d2. The
problem of determining the minimal volume of sets having constant width 4din
R", n > 2, seems considerably more difficult. Lower bounds for it have been
given by Firey [4] and Chakerian [1].

Let W be a set of constant width d and circumradius r in R". In this note we
prove the lower bound

(1.1) vmw;(\ /5—4#—1)"%13(0,(1/2),

which implies

(1.2) Vol W 2 ( 3+ - 1)" Vol B(0, d/2).

n+1
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ment and advice.
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Here Vol denotes the n-dimensional volume in R" and B(x, p) is the ball
having center x and radius p. This bound is, for n > 4, an improvement over
those previously known.

We also prove

THEOREM 1. Let K be a set of constant width d and circumradius r in R*
having the origin 0 as the center of its circumsphere, then K U — K contains the
ball of radius \/5(d/2)? — r* — (d/2) around the origin.

This result can be seen as a relative to the well known theorem stating that
the insphere of a set of constant width d is concentric to the circumsphere and
its radius is d — r, where r is the circumradius (see [3, p. 125]).

Arguments analogous to those below, but dealing with subsets of the unit
sphere, are used in [5], where an upper bound is given for the number of
directions sufficient to illuminate the boundary of sets having constant width.

2. ForasetA C R"and for A > 0 we denote by 4% the intersection of all the
balls of radius 4, having centers in A:

A*= N B(x,A)={pER" | B(p, 1) D 4)}.

x€A

We also use

h(4,x)=supy-x (the support function of 4),

yEA

p(4,x) =inf{t>0|1xgA4).

g, r,t)y=JA —r*+1?—1t.

Notice that g(4, r, t) is monotonic decreasing, positive and strictly convex as a
function of t when 4 >r.

Define

LEMMA 1. Let K be a nonempty set contained in the ball of radius r around
the origin in R”, then the relation

(2.1) p(K*, )z g, r, h(K,—u))
is satisfied for every A = r and every u€ S" !,

ProOOF. Let u be any unit vector, let A satisfy 4 = r and let a be the right
hand side of (2.1). We first show that au€ K*. Let x be any point of K. We have
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x| =r, —x-u=h(K,—u).
Using this and a = 0 we obtain
Ix—au|?= || x||>—2ax-u+a>=r*+2ah(K,—w)+a>*= 2%
This means that au€ B(x, 1) and since x is an arbitrary point of K, we have

aun€ N B(x,1)=K*.

x€EK

The origin is also a point of K*, because K C B(0, r) and 4 = r. K* is obviously
convex, so we have
{tu|0=st=a)cCK.

This shows that p(K*, u) = q, as needed. n

In some contexts, a good way to present the volume of a set K C R" is to
specify the radius of the ball having the same volume as K. We will call it the
effective radius of the set K and denote it by er K:

Vol K = Vol B(0, er K).

By u we denote the n — 1 dimensional surface area measure on S" !, the
boundary of the unit ball.

THEOREM 2. Let K be a set of diameter d and circumradius r. Let A satisfy
A>r, then

erK*z g(A,r,d/2).

PROOF. As we know, K* contains the origin and is convex. We can
therefore rewrite its volume thus:

1
Vol K* =~ f p(K*, w)"du(u).
nJs!
Using the lemma we have

Vol K ;—:; fs'—' g, r, h(K, — w)"du(u)

= f . Gg@,r, h(K,—u)" +1g(Q, r, h(K, u))")du(u).
nJds
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Since g(4, r, t) is positive and convex in ¢, so is g(4, r, t)". Therefore the above
inequality implies

(2.2) Vol K* = ! f g, r, (K, —n) + $h(K, w)"du(u).
n Js-

Since K has diameter d, we have
(K, —u)+ th(K,u) = id.

From (2.2) and the decreasing monotonicity of g(4, r, t) in ¢, we can therefore
conclude that

Vol Ki =t fy (A, r, ¥d)"du(u) = Vol B(O, g(A, r, d/2)). n
n -1

ProoF oF (1.1), (1.2). Since K¢ =K for sets of constant width d (see
[3, p- 123]), (1.1) can be derived easily from Theorem 2 using A =d, W =K.
(1.2) is a consequence of (1.1) and Jung’s Theorem r =d./n/(2n + 2) (see
(3, p. L11]). [ |

Let us denote by r, the minimal effective radius of all sets having constant
width two' in R". (1.2) is equivalent to r, = ./3 + 2/(n + 1) — 1. From the
proof it is evident that equality does not occur when n > 1. As mentioned
above, the exact computation of r,, for n = 3, is probably very hard, however,
the following problems seem to be answerable.

ProBLEM 1. Is the sequence {r,} monotonic decreasing?
PrROBLEM 2. Show that lim, . r, exists and compute it.

Inequality (1.2) shows that lim inf r, = ﬁ — 1. Because the unit ball has the
largcst volume among all sets having constant width 2 (see [3, pp. 106-107)),
we have lim sup 7, =< 1. As far as we know any value between \/3 —landlisa
possible candidate for lim r,. (If the answer to Problem 1 is ‘yes’ then surely
limsupr,=r,<1))

3. We now prove a generalization of Theorem 1.

t The Blaschke selection principle implies the minimum is attained.
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THEOREM 3. Let K be a set of diameter d contained in the ball B(0, r) inR".
Let A satisfy A >r, then

K* U — K* D B(0, g(4,r,d/2)).

PrROOF. Let u€S""!. Because K has diameter d, we have
h(K,w) + h(K, —u) = d. Therefore

min{A(K, u), h(K, —u)} = 4d.

Using obvious properties of p(-,-), Lemma 1 and the fact that g(4,r,¢) is
monotonic decreasing in ¢, we get

p(K* U — K*, u) 2 max{p(K*, u), p(— K*, u)}
= max{p(K*, u), p(K*, — u)}
= max{g(4, r, h(K, —w)), g4, r, h(K, u))}
=g(4, r, min{h(K, w), h(K, —u)})
=g(A,r,dr2).
This proves K* U — K* D B(0, g(4, r, d/2)) as needed. [ |

ProOOF OF THEOREM 1. Since K¢ = K, using Theorem 3 with A = d gives
Theorem 1.
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