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ABSTRACT 

A lower bound is given for the volume of sets of constant width. 

1. Introduction 

A set of  constant width d in Euclidean space R n is a compact, convex set, 

such that the distance between any distinct, parallel supporting hyperplanes of  

it is d(see [3, pp. 122-131], [2]). 

The Blaschke-Lebesgue theorem states that of  all planar sets having con- 

stant width d the Reuleaux triangle has the least area, ~ ( n -  x/~)d 2. The 

problem of  determining the minimal volume of  sets having constant width d in 
R n, n > 2, seems considerably more difficult. Lower bounds for it have been 

given by Firey [4] and Chakerian [l ]. 

Let W be a set of  constant width d and circumradius r in R". In this note we 

prove the lower bound 

(1.1) Vol W>(  ~ -  l)~VolB(O,d/2), 

which implies 

)n 
(1.2) Vol W > 3 + - - - 2  1 Vol B(O, d/2). 

n + l  

t The research exposed in this note was done while I was at the Hebrew University of Jerusalem, 
as a student of Professor Gil Kalai. I would like to thank Prof. Kalai for his interest, encourage- 
ment and advice. 
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Here Vol denotes the n-dimensional volume in R ~ and B(x,p)  is the ball 

having center x and radius p. This bound is, for n > 4, an improvement over 

those previously known. 

We also prove 

THEOREM 1. Let K be a set o f  constant width d and circumradius r in R" 

ha ring the origin 0 as the center o f i t s  circumsphere, then K U - K contains the 
ball o f  radius x/5(d/2) 2 - r 2 - (d/2) around the origin. 

This result can be seen as a relative to the well known theorem stating that 

the insphere of  a set of  constant width d is concentric to the circumsphere and 
its radius is d - r, where r is the circumradius (see [3, p. 125]). 

Arguments analogous to those below, but dealing with subsets of  the unit 

sphere, are used in [5], where an upper bound is given for the number of 

directions sufficient to illuminate the boundary of sets having constant width. 

2. For a set A c R" and for it > 0 we denote by A ~ the intersection of all the 

balls of  radius it, having centers in A: 

A ~= N B(x, it)=(p R"lB(p, it) A). 
x E A  

We also use 

h (A, x) = sup y. x (the support function of A), 
yEA 

p(A, x) -- inf{t > 0[ t x ~ A } .  
Define 

g(2, r, t) = x/22 -- r 2 + t 2 -- t. 

Notice that g(it, r, t) is monotonic decreasing, positive and strictly convex as a 
function of  t when 2 > r. 

LEMMA 1. Let K be a nonempty set contained in the ball o f  radius r around 
the origin in R", then the relation 

(2.1) p(K a, u) >_-g(2, r, h(K, - a)) 

is satisfied for every 2 > r and every u E S " -  i. 

PROOF. Let u be any unit vector, let 2 satisfy 2 _-> r and let a be the right 

hand side of(2. l). We first show that au E K a. Let x be any point of  K. We have 
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I Ix l l  < - r ,  - x.u_-< h ( K , -  u). 

Using this and a > 0 we obtain 

II x - au II 2 = II x II '  - 2 a x . u  + a 2 < r 2 + 2ah(K,  - n) + a 2 = 22. 

This means that auEB(x ,  2) and since x is an arbitrary point of  K, we have 

a u g  N B ( x , ~ ) = K  ~. 
xEK 

The origin is also a point o fK  ~, because K c B(0, r) and A > r. K ~ is obviously 

convex, so we have 

{ t u l O < t  < a } c K  ~. 

This shows that p ( K  ~, u) > a, as needed. • 

In some contexts, a good way to present the volume of  a set K c R n is to 

specify the radius of the ball having the same volume as K. We will call it the 

effective radius of  the set K and denote it by er K: 

Vol K -- Vol B(0, er K). 

By # we denote the n - 1 dimensional surface area measure on S"-~, the 

boundary of  the unit ball. 

TH~ORr.M 2. Let  K be a set o f  diameter  d and  circumradius r. Le t  ,~ satisfy 

A > r, then 

er K ~ > g(,~, r, d/2).  

PROOF. As we know, K ~ contains the origin and is convex. We can 
therefore rewrite its volume thus: 

Vol K~ =-1 : s"  n -' P(Ka' u)nd#(u)" 

Using the lemma we have 

Vol K a > _1 : s"  n -, g(2, r, h (K,  - u))"dg(u) 

1 
[ "  (½g(;t, r, h (K,  - u)) ~ + ½g(2, r, h (K,  u))')dg(u). 

n JSq-1 
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Since g(2, r, t) is positive and convex in t, so is g(2, r, t) ~. Therefore the above 
inequality implies 

(2.2) Vol K ~ > _1 : s '  n -, g(3., r, ½h(K, - u) + ½h(K, u))~d#(u). 

Since K has diameter  d, we have 

½h (K, - u) + ½h(K, u) < ½d. 

From (2.2) and the decreasing monotonici ty of g(2, r, t) in t, we can therefore 

conclude that 

> 1  L Vol K a = - g(2, r, ½d)"dg(u) = Vol B(0, g(2, r, d/2)). 
n -' 

PROOF OF (1.1), (1.2). Since K d = K  for sets of  constant width d (see 
[3, p. 123]), (1.1) can be derived easily from Theorem 2 using ;t = d, IV = K. 

(1.2) is a consequence of  (1.1) and Jung's Theorem r < d x / n / ( 2 n  + 2) (see 

[3, p. l l l l ) .  • 

Let us denote by rn the minimal  effective radius of  all sets having constant 
width twC in R n. (1.2) is equivalent to r n > x/3 + 2/(n + l) - 1. From the 
proof  it is evident that equality does not occur when n > 1. As ment ioned 
above, the exact computat ion ofr~, for n >_- 3, is probably very hard, however, 
the following problems seem to be answerable. 

PROBLEM I. IS the sequence {r, } monotonic  decreasing? 

PROBLEM 2. Show that lim~_~ r~ exists and compute it. 

Inequality (1.2) shows that l im inf  rn => x/'3 - 1. Because the unit  ball has the 
!argest volume among all sets having constant width 2 (see [3, pp. 1 0 6 - 1 0 7 ] ) ,  

we have lira sup rn _-< 1. As far as we know any value between x/~ - 1 and 1 is a 
possible candidate for lira r,. (If the answer to Problem I is 'yes' then surely 

lira sup rn < r2 < 1 .) 

3. We now prove a generalization of  Theorem 1. 

, The Blaschke selection principle implies the minimum is attained. 
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TI~EOREM 3. Let  K be a set o f  diameter d contained in the ball B(O, r) in R n. 

Let  2 satisfy 2 > r, then 

K ~ U - K a ~ B(0, g(2, r, d/2)). 

PROOF. Let u E S  n-re. Because K has diameter d, we have 

h (K, u) + h (K, - u) < d. Therefore 

min{h(K, u), h(K,  - u)} < ½d. 

Using obvious properties of  p ( . , . ) ,  Lemma 1 and the fact that g(2, r, t) is 

monotonic decreasing in t, we get 

p(K ~ U - K ~, u) > max{p(K a, u),p( - K a, u)} 

= max{p(K ~, u), p(K  ~, - u)} 

> max{g(2, r, h(K,  - u)), g(2, r, h(K,  u))} 

= g(2, r, min{h(K, u), h(K,  - u)}) 

> g(2, r, d/2). 

This proves K ~ U - K ~ D B(0, g(2, r, d/2)) as needed. • 

PROOF OF THEOREM 1. Since K d = K,  using Theorem 3 with 2 -- d gives 

Theorem 1. 
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